P

BWK225S Serials

CAN Bus Dual-Axis Inclinometer Technical Manual

3WM225S
CAN Bus Dual-Axis Inclinometer

Introduction

Designed by Bewis Sensing Technology LLC, BWK225S is a CAN output low cost dual-axis inclinometer, adopting the latest industrial level MEMS accelerometer. Its measuring range is $\pm 90^{\circ}$, highest accuracy is 0.2°, working temperature is $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$, the product with a small size and low weight, can meet space-restricted application requirements.

This product converts static gravity field changes into angle changes, It outputs horizontal angle values directly by digital, this product has the advantages of low cost, small temperature drift, simple to use, and strong resistance to external disturbances. It is an ideal option for attitude measurement in photovoltaic power (PV), PTZ control, tower turbines monitoring and other industries.

Features

- Dual-axis inclinometer measurement
- Resolution: 0.02°
- Voltage input: 9~35V
- Product size: L55mm \times W37mm $\times \mathrm{H} 24 \mathrm{~mm}$ (customizable)
- Accuracy: 0.2°
- Measuring range: $\pm 90^{\circ}$
- Output interface: CAN
- IP67 protection

Applications

- Industrial automatic leveling
- Medical devices
- PV automatic tracking
- Tower tilt monitoring
- Special valves
- Oil drilling equipment
- Industrial converters
- Crane tilt angle control

Specifications

Electrical Specifications| Parameters | Conditions | Min | Typical | Max |
| :--- | :--- | :--- | :--- | :--- |
| Power supply | | 9 | 12 | 35 |
| Operating current | Non-loaded | 20 | 30 | 40 |
| Operating temperature | | -40 | | mA |
| Sore temperature | | -55 | | +85 |

Performance Specifications

Measuring range(${ }^{\circ}$)	Conditions	± 10	± 30	± 60	± 90
Measuring axis		X-Y	X-Y	X-Y	X-Y
Accuracy $\left({ }^{\circ}\right.$)	Indoor	0.2	0.2	0.2	0.2
Resolution(${ }^{\circ}$)		0.02	0.02	0.02	0.02
Zero temperature drift(${ }^{\circ}{ }^{\circ} \mathrm{C}$)	$-40 \sim 85^{\circ} \mathrm{C}$	± 0.01	± 0.01	± 0.01	± 0.01
Cross axis error $\left({ }^{\circ}\right.$)		0.1	0.1	0.1	0.2
Power on time		$\leq 50 \mathrm{~ms}$	$\leq 50 \mathrm{~ms}$	$\leq 50 \mathrm{~ms}$	$\leq 50 \mathrm{~ms}$
The highest frequency output(Hz)		100	100	100	100
MTBF	≥ 30000 hours/time				
Electromagnetic compatibility	according to GBT17626				
Insulation resistance	$\geq 100 \mathrm{M} \Omega$				
Shock resistance	$2000 \mathrm{~g}, 0.5 \mathrm{~ms}, 3$ times/axis				
Weight (g)	210 (package excluded)				

Resolution: The measured minimum change value that the sensor can detect and resolve within the measurement range.
Accuracy: The error between the actual angle and the Root mean square(RMS) of the measured angle of the sensor (≥ 16 times).

BTHK2258

$\%$
 Mechanical Characteristic

Connector	Metal connector (standard cable is 1.5m)
Protection level	IP67
Shell material	Magnesium alloy sanding oxidation
Installation	Three M4 screws

Product Size: L55*W37*H24 (mm)

(A)

Bare plate product size
Product size: L33*W27*H6 (mm)
Note: $\pm 1 \mathrm{~mm}$ error for length and width dimensions, please refer to actual size.

Installation direction

The correct installation method can avoid measurement error. The following points should be made when installing the sensor:
First of all, to ensure that the sensor mounting surface and the measured surface completely close, the measured surface should be as horizontal as possible, can not have the angle shown in Figure A and Figure C, the correct installation is shown in Figure B and Figure D.

Secondly, the bottom cable of the sensor and the axis of the measured object shouldn't generate the angle shown in E. When installing, the bottom cable of the sensor should be kept parallel or orthogonal to the rotation axis of the measured object. This product can be installed horizontally or vertically (vertical installation requires customization). The correct installation method is shown in Figure F.

Finally, the installation surface of the sensor must be fixed with the measured surface tightly and smoothly, to avoid measurement error that may be caused by the acceleration and vibration.

BUK 2255
CAN Bus Dual-Axis Inclinometer

Electrical connections

Electrical interfaces						
Cable color	RED	BLUE	BLACK	GREEN	YELLOW	
$\&$ function	1	2	3	4	5	
	VCC DC 9-35V	NC	GND	CAN L	CAN H	

CAN BUS wiring diagram

3UK 225 S
CAN Bus Dual-Axis Inclinometer

Protocol

CAN includes 8 bytes. It will adds 0 to it when the date bytes is not enough. Sending the first byte 0×40 indicates a write command, returning the first byte 0×40 indicates that the write was successful. The ID is the CAN communication node number.

1)Modify the nodes

(ID=0x01~0x7F), default ID=0x05

| | CAN-ID | The first
 byte | second | third | fourth | fifth | sixth | seventh | eighth |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| send | $0 \times 600+0 \times 05$ | 0×40 | 0×10 | 0×10 | 0×00 | ID | 0×00 | 0×00 | 0×00 |
| response | $0 \times 580+0 \times$ ID | 0×40 | 0×10 | 0×10 | 0×00 | ID | 0×00 | 0×00 | 0×00 |

Note: If the controller send CAN-ID=0x600+0x05(default), send data:40 10100010000000
If the sensor return CAN-ID=0x580+0x10, return data:40 10100010000000
The CAN-ID is $0 \times 590(0 \times 580+0 \times 10)$, indicating that the ID modification is successful. At this time, the CANID needs to be changed to 0×590 to send the other naming.
2) Set CAN's baud rate

	CAN-ID	The first byte	second	third	fourth	fifth	sixth	seventh	eighth
send	$0 \times 600+0 \times 05$	0×40	0x20	0×10	0×00	Baud	0×00	0×00	0×00
response									

Note: The fifth byte (Baud) means 0x01,0x02, 0x03, 0x04. 0×01 means to set 500 k bps as the baud rate. 0×02 means to set 250 k bps as the baud rate. 0×03 means to set 125 k bps as the baud rate. 0×04 means to set 100 k bps as the baud rate.

The default baud rate is 125 k bps. Once you revise the baud rate and want to make a success revise, the sensor need to be re-powered.
3) Set relative / absolute zero

	CAN-ID	The first byte	second	third	fourth	fifth	sixth	seventh	eighth
send	$0 \times 600+0 \times 05$	0×40	0×05	0×10	0×00	Type	0×00	0×00	0×00
response	$0 \times 580+0 \times 05$	0×40	0×05	0×10	0×00				

Note: The fifth byte means 0×00 and 0×01.
0×00 indicates the setting is an absolute zero,0x01 indicates a relative zero.
After setting the zero point, you need to enter the save command to set it successfully. (Default is absolute zero)
Absolute zero: Based on the factory-calibrated zero point.
Relative zero: Reference to the zero after the current installation.

3WK 2258
CAN Bus Dual-Axis Inclinometer
4) Query relative/ absolute zero

	CAN-ID	The first byte	second	third	fourth	fifth	sixth	seventh	eighth
send	$0 \times 600+0 \times 05$	0×40	$0 \times 0 \mathrm{~d}$	0×10	0×00				
response	$0 \times 580+0 \times 05$	0×40	0×05	0×10	0×00	Type	0×00	0×00	0×00

Note: The fifth byte means 0×00 and 0×01. 0×00 indicates an absolute zero and $0 x 01$ indicates a relative zero.

5) Save the setting

	CAN-ID	The first byte	second	third	fourth	fifth	sixth	seventh

Note: For some parameter, revised parameter doesn't work until you send the saving command.

6) Read angle of X -axis and Y -axis

	CAN-ID	The first byte	second	third	fourth	fifth	sixth	seventh	eighth
send	$0 \times 600+0 \times 05$	0×40	0×04	0×10	0×00				
response	$0 \times 580+0 \times 05$	Xsign	XH	XL	Ysign	YH	YL	0×00	0×00

Note: Reading angle command can be effective under the response mode.
X sign and Y sign are the sign positions of the X and Y axis, 00 is positive and 10 is negative;
XH and YH are integer numbers of X -axis and Y -axis angles, respectively;
$X L$ and $Y L$ are the decimal places of the X-axis and Y-axis angles, respectively.
For example, if the return date is 585001234501012340000 , the angle of X -axis is $+12.34^{\circ}$.

7) Set the output mode

| | CAN-ID | The first
 byte | second | third | fourth | fifth | sixth | seventh | eighth |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| send | $0 \times 600+0 \times 05$ | 0×40 | $0 \times 0 \mathrm{c}$ | 0×10 | 0×00 | mode | 0×00 | 0×00 | 0×00 |
| response | $0 \times 580+0 \times 05$ | 0×40 | $0 \times 0 \mathrm{c}$ | 0×10 | 0×00 | mode | 0×00 | 0×00 | 0×00 |

Note: The fifth byte mode is 0×00 : answer mode,
0x01: 5 Hz Data Rate,
0x02: 10Hz Data Rate
0x03: 20Hz Data Rate,
0x04: 25 Hz Data Rate,
0x05: 50Hz Data Rate,
0x06: 100Hz Data Rate (default)

[^0]
3WK225S
 CAN Bus Dual-Axis Inclinometer

8) Inclinometer sensor automatically outputs the angle

When the sensor is set to automatic mode output, there will be an angle output after the sensor is powered on. Default is automatic mode.

| | CAN-ID | The first
 byte | second | third | fourth | fifth | sixth | seventh | eighth |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| send | | | | | | | | | |
| response | $0 \times 580+0 \times 05$ | Xsign | XH | XL | Ysign | YH | YL | 0×00 | 0×00 |

Note: The resolution of the output angle format is the same as that of the response mode to read the X and Y axis.

9) Factory setting command

| | CAN-ID | The first
 byte | second | third | fourth | fifth | sixth | seventh | eighth |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| send | | | | | | | | | |
| response | $0 \times 600+0 \times 05$ | 0×40 | 0×0 | 0×10 | 0×00 |

Note: All parameters are changed to the factory defaults, and some of the return values need to be powered off before being output.

10) Set the type of CAN-ID

| | CAN-ID | The first
 byte | second | third | fourth | fifth | sixth | seventh | eighth |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| send | $0 \times 600+0 \times 05$ | 0×40 | 0×70 | 0×10 | 0×00 | XX | 0×00 | 0×00 | 0×00 |
| response | | | | | | | | | |

Note: XX means 00 and 01.00 means the standard ID type (11 bits) and 01 means extended ID type (27 bits). The default is standard.

11) Set the standard address of CAN-ID

| | CAN-ID | The first
 byte | second | third | fourth | fifth | sixth | seventh | eighth |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| send | $0 \times 600+0 \times 05$ | 0×40 | 0×71 | 0×10 | 0×00 | XH | XL | 0×00 | 0×00 |
| response | $0 \times X H X L+0 \times 05$ | | | | | | | | |

Note: The default standard CAN-ID is $0 \times 580+05$ and the maximum is not more than 7FF. Here we revise'580' in ' $0 \times 580+05$ ', 05 can be modified through the front nodes. After revise, the CAN-ID will become $0 \times X H X L+0 \times 05$ when re-powered on.
For example, send the data: 60540711000012300 00, the CAN-ID will become $123+5=128$ when it is repowered on.

12) Set the extended address of CAN-ID

We need to divide the address into two when setting the address of extended CAN-ID. First send high 16 address, then send the low 16 address. The CAN-ID address will change into new one (here the CAN-ID address we receive do not need to add the nodes) after being re-powered on. The maximum can not be more than 7FFFFFF. The default is $0 \times 18 f a 0216$.

I Set high 16 extended address of CAN-ID

	CAN-ID	The first byte	second	third	fourth	fifth	sixth	seventh	eighth
send	$0 \times 600+0 \times 05$	0×40	0×72	0×10	0×00	XH	XL	0×00	0×00
response									

Note: the high 16 address can not surpass 7FF.

Set low 16 extended address of CAN-ID

	CAN-ID	The first byte	second	third	fourth	fifth	sixth	seventh	eighth
send	$0 \times 600+0 \times 05$	0×40	0×73	0×10	0×00	XH	XL	0×00	0×00
response									

Note: Low 16 address can not surpass FFFF.
For example, send the data respectively as follows, 6054072100001230000 and 6054073100045670000 . CAN-ID will change into 01234567 after being re-powered on.

3WK225S
CAN Bus Dual-Axis Inclinometer

Ordering Information

Product number	Way of communication	Package condition
BWK225S-90-CAN	CAN	IP67 Package/Metal Connector

Executive standard

- Enterprise Quality System Standard: ISO9001:2008 Standard (Certificate No.: 10114Q16846ROS)
- CE certification (certificate number: 3854210814)
- ROHS (certificate number: SO81426003)
- GB/T 191 SJ 20873-2003 General specifications for tiltmeters and spirit levels
- GBT 18459-2001 sensor main static performance index calculation method
- JJF 1059-1999 Evaluation and Expression of Measurement Uncertainty
- GBT 14412-2005 mechanical vibration and shock mechanical installation of accelerometer
- General requirements for GJB 450A-2004 equipment reliability
- Quality control of key parts and important parts of GJB 909A
- GJB 899 Reliability Qualification and Acceptance Test
- GJB 150-3A high temperature test
- GJB 150-4A low temperature test
- GJB 150-8A rain test
- GJB 150-12A dust test
- GJB 150-16A vibration test
- GJB 150-18A impact test
- GJB 150-23A Tilt and Swing Test
- GB/T 17626-3A RF electromagnetic radiation immunity test
- GB/T 17626-5A surge (hit) impulse immunity test
- GB/T 17626-8A power frequency magnetic field immunity test
- GB/T 17626-11A voltage dips, short interruptions and voltage changes immunity

BWK225S Serials
 CAN Bus Dual-Axis Inclinometer

[^1]
[^0]: Note: The 5 Hz Data Rate means that 5 times of data is automatically output every second. Sending other names should be done in the question and answer mode (automatic mode is to continuously output the current angle of the axis according to the specific frequency, and it is easier to see other commands in the answer mode. value).

[^1]: Wuxi Bewis Sensing Technology LLC
 Address: Building 30, No. 58 Xiuxi Road, Binhu District, Wuxi City
 Hotline: 400-618-0510
 Tel: +86 510 85737178-801
 Email: sales@bwsensing.com
 Website: www.bwsensing.com

