

BW-VG625 Series

Ultra High Accuracy CAN Dynamic Inclination Sensor

Technical Manual

BW-VG625 Ultra High Accuracy CAN Dynamic Inclination

Introduction

The VG625 dynamic inclinometer is a high-precision attitude measurement device that can measure the roll, pitch and angle of moving carriers. Inertial attitude parameters for velocity and acceleration. The attitude deviation is estimated by the 6-state Kalman filter with appropriate gain, which is suitable for operation. Inclination measurement under dynamic or vibrating conditions. VG625 uses high-quality and reliable MEMS accelerometer and gyroscope, and passes algorithms. The measurement accuracy is ensured, while the sealing design and strict process ensure that the product can accurately measure the attitude parameters of the carrier in the harsh environment. Pass through various compensations such as nonlinear compensation, quadrature compensation, temperature compensation and drift compensation, it can greatly eliminate the error caused by interference and improve the level of accuracy of the product.

VG625 has a digital interface, which can be easily integrated into the user's system.

Feature

- Dynamic accuracy: 0.05°
- Static accuracy: 0.01°
- Non-linear compensation, quadrature compensation
- Special offset tracking algorithm to eliminate drift
- CAN interface output optional
- Wide temperature range: -40°C~+85°C
- High-performance Kalman filter algorithm
- Dimension: L60x W59 x H29 (mm)

Application

- Underwater unmanned boat
- Turbine sloshing monitoring
- Platform stability
- large ship

- Photoelectric pod
- Unmanned Drive
- Special Vehicles
- Unmanned Craft

Feature

🗲 Electrical index

Voltage	9-36V DC
Working current	30mA (40mA Max)
Temperature in use	-40~85℃
Temperature in store	-55~100℃

🛞 Performance Index

	Dynamic accuracy	0.05°				
Attitude Parameter	Static accuracy	0.01°				
	Resolution	0.01°				
	Tilt margin	Pitch ± 90°, Roll ± 180°				
	Dimension	L60×W59×H29 (mm)				
Physical properties	Weight (with wire)	280g				
	Weight (With packaging)	360g				
	Start delay	<50ms				
Interface characteristics	Maximum sampling rate frequency	500Hz				
characteristics	Serial communication rate	2400 to115200 baud rate				
	Digital output format	Binary high-performance				
Trouble-free work on average	≥30000 hours					
EMC	According to GBT17626					
Insulation Resistance	≥100MΩ					
Surge suppression	2000g, 0.5ms, 3 Times/shaft					

Resolution: The measured minimum change value that the sensor can detect and resolve within the measurement range. Accuracy: The error between the actual angle and the Root mean square(RMS) of the

Accuracy: The error between the actual angle and the Root mean square(RMS) of the measured angle of the sensor(\geq 16 times).

Mechanical

Connector	Metal interface (Cable 1.5m)
Protection level	IP67
Shell material	Magnesium aluminum alloy oxidation
Installation	Four M4 screws

Package product size

Product Size: L60*W59*H29 (mm)

PCB Size: L44*W35*H11mm, ±1mm error for length and width dimensions, please refer to actual size

Installation

The correct installation method can avoid measurement errors. When installing the sensor, please do the following: First of all, make sure that the sensor mounting surface is completely close to the measured surface, and the measured surface should be as level as possible. There should be no included angles as shown in Figure A and Figure C. The correct installation method is shown in Figure B and Figure D.

Secondly, the bottom line of the sensor and the axis of the measured object cannot have an angle as shown in Figure E, and the bottom line of the sensor should be kept parallel or orthogonal to the axis of rotation of the measured object during installation. This product can be installed horizontally or vertically (vertical installation needs to be customized), and the correct installation method is shown in Figure F.

Finally, the mounting surface of the sensor and the surface to be measured must be tightly fixed, smooth in contact, and stable in rotation, and measurement errors due to acceleration and vibration must be avoided.

electrical connection

Wiring Definition	ons				
	红色RED	蓝色BLUE	黑色BLACK	绿色GREEN	<mark>黄色YELLOW</mark>
Line Color	1	2	3	4	5
Function	VCC DC 9-36V	NC	GND ground	CAN L	CAN H

CAN bus wiring diagram

Debugging softwa 'e

When communicating with CAN interface products, there is generally a dedicated CAN receiving device, so the software comes with the CAN acquisition device. The usage methods are different, so there is no corresponding supporting software. Take the CAN receiver module and product communication used by our company as an example below:

Configure CAN baud rate and parameters as follows:

				in the second second in the	1-	_	
T.	青选择串	[1]号:	COMS	刷新列表	关闭串		
(長	非 口波特	率日	115200		2 Charles		
ì	受备序列	号: 51	ff-7306-6785-5	348-1025-2467			
CAN接I	口配置	串口配置	t				
CAN	线波特率	125	5000	配置波特率	医 恢复	ã	
接收过	滤器配		自动重发 [40		
序号 1	使能	格式标准	标识:	待 1	掩码		
2		标准	000	000		-	
3		扩展	1FFFFFFF	1FFFFF	=F		
4		扩展	1FFFFFFF	1FFFFF	Ŧ	-	
5		扩展	1FFFFFFF	1FFFFF	Ŧ		
6		扩展	1FFFFFFF	1FFFFFF	÷F		
7		扩展	1FFFFFFF	1FFFFFF	÷F		
8		扩展	1FFFFFFF	1FFFFF	Ŧ	~	
		+2-12			+		

The receiving and sending area is set as follows:

▶ ■ ⑦ 送区域 基本数据发送			2	置(X)	界面的	显示(Y)	帮助	1(Z)						
选中 ID	- mers	Le	en D	ATAO	DATA1	DATA2	DATA	3 DAT	A4 DAT	A5 DATA6	DATA7	Format	Туре	发送控制
605		8	4	0	10	10	0	6	0	0	0	标准帧	麵提	
+ +, - ✓		<											,	□ 定时发送 发送间隔 1000 ms 发送
制收区域		*												
	1222													
D	Da0	Da1	Da2	Da3	Da4	Da5	Da6	Da7	Len	Fmt T	VP			
	5 0x10									Standard				
	5 0x10									Standard				
0x58	5 0x10	0x01	0x49	0x75	0x00	0x00	0x09	0x08	0x08	Standard	i Data			
0.05.0	5 0x10	0x01	0x49	0x07	0200	0x00	0:08	0x21	0x08	Standard	i Data			
03688	5 0x10			0x90	0x00				0x08	Standard	i Data			
0x58	5 0x10			0x10						Standard				
0x58 0x58		0x01								Standard				
0x58 0x58 0x58										Standard	Data			
0x58 0x58 0x58		0x01	0x46	0x25	0x00	0.800	0400	UA/J	0400	Dognadia				

Order Information							
Model	Communication Mode	Package Situation					

woder	Communication wode	Package Situation
BW-VG625	CAN	IP67/ Metal interface

Executive standard

- Specification for Static Calibration of Biaxial Inclination Sensors National Standard (Draft)
- GB/T 191 SJ 20873-2003 General Specification for Tiltmeters and Levels

BW-VG625 Series

Ultra High Accuracy CAN Dynamic Inclination Sensor

Wuxi Bewis Sensing Technology LLC

Add: Building 30, NO. 58, Xiuxi Road, Binhu District, Wuxi City,
Jiangsu Province, China
Tel: +86 18921292620
Mail: sales@bwsensing.com
Web: www.bwsensing.com